Search results for " 54C25"
showing 2 items of 2 documents
Urysohn's metrization theorem for higher cardinals
2011
In this paper a generalization of Urysohn's metrization theorem is given for higher cardinals. Namely, it is shown that a topological space with a basis of cardinality at most $|\omega_\mu|$ or smaller is $\omega_\mu$-metrizable if and only if it is $\omega_\mu$-additive and regular, or, equivalently, $\omega_\mu$-additive, zero-dimensional, and T\textsubscript{0}. Furthermore, all such spaces are shown to be embeddable in a suitable generalization of Hilbert's cube.
Isometric embeddings of snowflakes into finite-dimensional Banach spaces
2016
We consider a general notion of snowflake of a metric space by composing the distance by a nontrivial concave function. We prove that a snowflake of a metric space $X$ isometrically embeds into some finite-dimensional normed space if and only if $X$ is finite. In the case of power functions we give a uniform bound on the cardinality of $X$ depending only on the power exponent and the dimension of the vector space.